Day One: Language Basics

  • Course Introduction
  • About Data Science
    • Data Science Definition
    • Process of Doing Data Science.
  •  Introducing R Language
  • Variables and Types
  • Control Structures (Loops / Conditionals)
  • R Scalars, Vectors, and Matrices
    • Defining R Vectors
    • Matricies
  • String and Text Manipulation
    • Character data type
    • File IO
  • Lists
  • Functions
    • Introducing Functions
    • Closures
    • lapply/sapply functions
  • DataFrames
  • Labs for all sections

 

Day Two: Intermediate R Programming

  • DataFrames and File I/O
  • Reading data from files
  • Data Preparation
  • Built-in Datasets
  • Visualization
    • Graphics Package
    • plot() / barplot() / hist() / boxplot() / scatter plot
    • Heat Map
    • ggplot2 package ( qplot(), ggplot())
  • Exploration With Dplyr
  • Labs for all sections

 

Day 3: Advanced Programming With R

  • Statistical Modeling With R
    • Statistical Functions
    • Dealing With NA
    • Distributions (Binomial, Poisson, Normal)
  • Regression
    • Introducing Linear Regressions
  • Recommendations
  • Text Processing (tm package / Wordclouds)
  • Clustering
    • Introduction to Clustering
    • KMeans
  • Classification
    • Introduction to Classification
      • Naive Bayes
      • Decision Trees
      • Training using caret package
      • Evaluating Algorithms
  • R and Big Data
    • Hadoop
    • Big Data Ecosystem
    • RHadoop
  • Labs for all sections